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Abstract A new method is presented for the determination of kinetic 
parameters based on a functional relationship among experimental data 
derived from the postulated model. The data, even though containing 
errors, are manifestations of this relationship, which should be satisfied 
by parameters fitted to the system. The procedure involves the use of 
numerical integration and/or differentiation of the data, followed by 
multiple linear regression. It does not require initial estimates or repet- 
itive iteration for linear systems and can be applied to nonlinear models. 
The accuracy of the estimated parameter depends on the goodness of the 
particular numerical approximation method used. 
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The estimation of parameter values is essential in the 
analysis of many chemical kinetic, biochemical kinetic, and 
pharmacokinetic processes. The procedure involves the 
initial development of a model with the corresponding 
mathematical equations. The latter are then fitted, in a 
least-squares sense, to the experimental data by adjusting 
the parameter values. 

Computer programs were developed (1, 2) using non- 
linear regression procedures with modified Gauss-Newton 
methods (3, 4). The subject of nonlinear optimization 
methods was reviewed previously (5) and will not be 
elaborated here. Because of inherent difficulties associated 
with the nonlinear fitting procedure, such as the require- 
ment of good initial estimates and lengthy computations, 
other alternative methods were developed. A method was 
described (6) in which the differential (rate) equations are 
approximated by Picard's polynomials, while the experi- 
mental data are approximated by least-squares orthogonal 
polynomials. The parameters are then computed by 
equating the matching coefficients of the corresponding 
series. In this method, the computation time is greatly 
reduced by sacrificing some accuracy of the parameter 
estimates. 

A new procedure involves numerical differentiation by 
fitting smoothed least-squares polynomials to the data (7). 
The parameters are calculated algebraically from rate 
equations and then further improved by a nonlinear op- 
timization method. Because of the inherent difficulty in 
obtaining reliable derivatives, occasional divergence of the 
results occurs. The method is applicable to models where 
all dependent variables are experimentally measured. 
Other special methods include one for a biexponential 
equation where data points are equally spaced (8). 

The present paper describes a new general alternative 
method using linear regression analysis. The method is 
sufficiently flexible and applicable to many linear and 
nonlinear systems. 

THEORETICAL 

The principle of the method lies in the fact that experimental obser- 

vations, if error free, are not random outcomes. They are functionally 
related and are themselves manifestations of this relationship. This re- 
lationship is dictated by the empirical equations proposed to be consistent 
with the data. 

In reality, experimental data inevitably contain measurement errors, 
so manifestations of the relationships may be distorted or completely 
obscured. However, if errors are within some arbitrary tolerable limits, 
the relationships may still be discernible in the observed data and should 
be describable by parameters fitted to the system. 

The mathematical procedures include the use of numerical integration 
and/or differentiation of the experimental data as well as algebraic 
substitution of entities not observed. The use of numerical approximation 
methods is an attempt to reconstruct complete time profiles based on 
available information since most kinetic data are often obtained and 
presented as discrete data points. These manipulations are linear, and 
the resultant solution can be expressed as a linear function of a new set 
of independent variables generated by data transformation. Because of 
this linearity, they become amenable to the method of multiple linear 
regression for parameter optimization. The following examples illustrate 
the principle and procedures of the proposed method. 

Case I-In the reaction system shown in Scheme I: 

ki kg 

k 2  
B + C e D - E  

Scheme I 

reactants B and C form a reversible intermediate D ,  which is then con- 
verted into product E. The rate equations are: 

B = C = -klBC + kzD (Eq. 1) 

D = klBC - (k2  + k3)D (Eq. 2) 

E = k3D (Eq. 3) 

B(0) = Bo 0%. 4a)  

C(0) = co (Eq. 4 b )  
D(0) = E ( 0 )  = 0 (Eq. 4c)  

B(0 )  = B + D + E (Eq. 5a) 

c(0) = C +  D + E (Eq. 5 b )  
where B, C, D ,  and E are functions of time t and the dot accent denotes 
a first-time derivative. 

Mathematically, Eqs. 1-3 represent a linear transformation from [BC, 
01' into IB, C, 6, &I' as follows: 

with the initial values and mass balance constraints of: 

If B and C are assumed to be experimental observations, the unknown 

= (kz  + ks)[B(O) - B ]  - klBC - klk3 L ' B C  dt (Eq. 7) 

variable D in Eq. 1 can be eliminated by using Eqs. 3 and 5a (or 5b):  

Upon integration, Eq. 7 gives: 

B = B(0)  + (kz  + k3)[  B(O)t - &'. d t ]  

-k l  s' BC dt - klk3  s,' J t  BC d t  d t  (Eq. 8 )  
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In regression form, Eq. 8 may be written as: 

B = A0 + AlXl+ AzXz + A3X3 0%. 9) 

where Aj’s are regression coefficients, Xi’s are independent variables’, 
and: 

Ao = B(0) (Eq. 1Oa) 

A1 = k p  + k3 (Eq. lob)  

Az = -kl  (Eq. 1Oc) 

A3 = -klk3 (Eq. 10d) 

X I  = B(0)t - s,’B dt (Eq. l l a )  

X2 = s,’BC dt (Eq. l l b )  

X3 = x‘ X ‘ B C  dt dt (Eq. l l c )  

Equation 9 shows that the dependent variable B can be expressed as 
a linear function of the three independent variables, which can be esti- 
mated from observations B and C by any suitable numerical integration 
method. When appropriate weighting factors are assigned to the data 
points, the intercept and the three coefficients can be obtained by mul- 
tiple linear regression. The intercept represents the fitted initial value, 
and the three coefficients can be used to compute the three model pa- 
rameters. 

Equation 8 indicates that the experimental observations are not 
functions of time alone but are also the cumulative behavior of all pre- 
vious events. Therefore, it is important that the experimental data points 
be strategically located to minimize errors in numerical approximation. 
The variable C can be further eliminated by substitution if it is not an 
experimental observation. 

The present method does not consider each model parameter as a 
separate entity. The parameters are grouped together to form hybrid 
regression coefficients. When partial derivatives of the weighted sum of 
residuals with respect to coefficients are taken, the resultant normal 
equations are linear in the coefficients, yielding a unique set of coefficient 
values. By appropriate data transformation, the number of coefficients 
can be adjusted to equal the number of model parameters so that the 
resultant parameter values are also unique to the system. 

An important task in the present method is to obtain reliable numerical 
estimates of the independent variables. The trapezoidal method tends 
to produce systematic errors due to the nature of linear data interpolation. 
Polynomial interpolation has been successfully implemented in these 
laboratories using spline functions (9). Specifically, local data are fitted 
with serial cubic polynominal functions for sections of data that are 
theoretically differentiable. Other methods, including the Lagrange 
method, are available (10,ll).  

Case 11-For some systems, the procedure may involve direct scanning 
of parameters that are not linearly related. Consider the reaction shown 
in Scheme 11: 

k4 VmKm 
G L - F - + H  

k 5  

Scheme I I  

in which the reactant F forms the product H via Michaelis-Menten-type 
kinetics. Concurrently, the formation of intermediate G is reversible and 
first order. The reaction may be written as: 

. V,F H=- 
K,+F 

where V, is the maximum rate; K,, the nonlinear parameter of the 
system, is the Michaelis constant having the same dimensions as F. 

With the following initial values and the mass balance constraints: 

F(0)  = Fo (Eq. 15a) 

1 Although X-’s  are obtained by data transformation, they are considered inde- 
pendent variables so long a8 they are not linearly dependent. 

G ( 0 )  = H ( 0 )  = 0 

F(0)  = F+ G + H 

Eq. 12 can be transformed into: 

V,k5 ‘ F d t  - m L m  
or, in regression form: 

F = Ao + A l X l +  AzX2 + A3X3 

where: 

(Eq. 156) 

0%. 16) 

(Eq. 17) 

(Eq. 18) 

(Eq. 19a) 

(Eq. 19b) 

(Eq. 19c) 

(Eq. 19d) 

(Eq. 20a) 

(Eq. 20b) 

(Eq. 20c) 

Values for X1 can be obtained by numerical differentiation of the local 
data using spline interpolation or the polynomial smoothing technique 
(7). Numerical differentiation is a difficult procedure and requires great 
care to obtain reliable results. Values for Xp can be computed at each data 
point by assigning an arbitrary constant value to  K,. Values for X3 can 
be then estimated by numerical integration of XZ. Thus, for each assumed 
K,  value, the coefficients in Eq. 18 can be obtained by regression analysis 
after appropriate weights are assigned to the data. 

The corresponding Fo and the unknown constants kq, k5, and V,,, can 
be computed from Eqs. 19a-19d. By using this set of parameters, in- 
cluding K,, the theoretical values of F can be generated by any suitable 
means such as the Runge-Kutta method. The goodness of the fit can be 
measured by computing the weighted sum of the squares of residuals, 
SS, and scanning the SS values as a function of K,. Such a plot repre- 
sents a projection of the SS surface on the K, coordinate and has a 
unique minimum; it yields a corresponding set of best fit parameter 
values. 

Case 111-For a large body of kinetic data described by a nonspecific 
multiexponential equation of the form: 

Y =  5 ai exp (-A$) (Eq. 21) 

the intercept parameter ai and the exponent parameter Xi can be simi- 
larly estimated by using multiple integrals oft and Y (also see Appendix). 
This result is due to the special properties of the equation in that its de- 
rivatives and integrals are again multiexponential equations. For ex- 
ample, if n = 3, there are six undetermined constants and the regression 
equation takes the form: 

i = l  

6 

j -  1 
Y = C AjXj (Eq. 22) 

where: 

A1 = + + a3 (Eq. 23a) 

A2 = -qi& + 92.46 (Eq. 23b) 

AB = -91A6 (Eq. 23c) 

A* = -(hi + A2 + A,) (Eq. 24a) 

A5 = -(hiAz + AzA3 + A3Ai)  (Eq. 246) 

As = -(AiA2h) (Eq. 24c) 

x, = 1.0 (Eq. 25a) 

x2= t (Eq. 25b) 
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x3 = - P  

X 4 =  X Y d t  

X 5 =  x' l t Y d t d t  

Xg = s,' l' J' Y d t  dt dt  

plicated methods. A recent report (18) indicated that parameters ob- 
tained by the present method agreed well with those obtained by Pfeffer 
(19), using the spectinomycin pharmacokinetic data of Wagner et al. 

Another advantage is that solutions to many linear systems, which may 
be difficult to  obtain, are not required. For nonlinear systems where ex- 
plicit solutions are not available, the use of the Runge-Kutta procedure 
does not represent a new complicating factor in the present method since 
it is a well-established technique. 

(Eq* 25c) 

(Eq. 25d) (20). 

(Eq. 25e) 

(Eq. 25f)  

x 3  + A ~ x '  - A ~ x  + Ag = 0 (Eq. 271 

General methods of finding roots of nth-degree polynomial equations 
can be found in many text books (10,12). Computer subroutines are also 
available (13). A cubic equation can also be solved by using the trigono- 
metric method (14). The three intercept parameters can be obtained by 
solving Eqs. 23a, 26a, and 266, which represent a system of three si- 
multaneous equations in three unknowns where 41 and q z  can be com- 
puted from Eqs. 236 and 23c. 

DISCUSSION 

The goodness of the estimated parameters depends on the accuracy 
of the calculated X j  values. For a given set of X j  values, the proposed 
method yields a unique set of parameter values. For this reason, it is 
important to choose a reliable empirical function that can best numeri- 
cally approximate the true, but unknown, function. Of the several nu- 
merical approximation methods, such as least-squares polynomials (7), 
the Akima method ( l l ) ,  spline functions (15,16), or modified splines (17), 
spline functions have been tested and found to be a convenient procedure 
(16). 

Splines are ideal in the estimation of areas because the errors they 
generate are usually small and less biased and the effects of fluctuation 
in input data are usually dampened by numerical integration. However, 
since some X j  values are obtained by data transformation, they are not 
error free. The errors are related to those of the input data. Currently, 
the statistical aspect of the present method is under investigation. 

While integration is a smoothing operation, numerical differentiation 
is a rather hard and undesirable one. It tends to magnify even small noises 
in the data. Thus, when it is used to obtain X I  values of Eq. 17, large er- 
rors should be anticipated. The least-squares polynomials (7) are usually 
more satisfactory but do not completely eliminate the problem. Because 
of the unreliability, application of numerical differentiation should be 
monitored carefully or avoided whenever possible. For example, the F 
in Eq. 17 may be eliminated by further integration to yield a new re- 
gression equation after rearrangement. In any event, the estimated pa- 
rameters may be refined further by using a nonlinear regression proce- 
dure. 

In nonlinear regression, parameters are often searched by iteration in 
confined parameter spaces to prevent meaningless results. On the other 
hand, no constraints are imposed on parameters in the present method. 
Thus, unexpected solutions, such as negative rate constants, may occur, 
but this result does not imply that the method is inadequate. Rather, it 
may suggest that the model is inadequate for the data or that large and/or 
systematic errors have been introduced in some calculated X j  values. In 
cases such as multiexponential equations, such inconsistencies may lead 
to the formation of Xi parameters in conjugated complex form. 

Implicit in the application of the proposed method is that each data 
point should be single valued so that the corresponding X j  values are also 
single valued after numerical integration or differentiation. For replicate 
observations, the data should be fitted with smoothing least-squares 
polynomials (7) or least-squares splines as described by Wold (15). The 
fitted curve can be used to calculate the required X j  values. 

In essence, the present method is predicated on the recognition that, 
for a given kinetic system, there is one unique functional relationship 
among all experimental data. The data are conceptually tied together 
to form one or more continuous strings and then utilized in one regression 
step to obtain the best fit parameters. Therefore, the algorithm is greatly 
simplified, resulting in high efficiency in data processing. The estimated 
parameters are also comparable to those obtained by other more com- 

Y = Za, exp ( - A , t )  0%. A l )  

the following notations are defined: 

qi = Z(a,/A,) (Eq. A2) 

q 2  = Z(a, /h ,Z)  (Eq. A3) 

43 = Z(a , /AL3)  (Eq. -44) 

(Eq. A5) 

(Eq. 146) 

s2 = XiXk = sum of product of Xi taken two at  a time (Eq. A7) 
i f k  

s g  = sum of product of Xi taken three at  a time (Eq. A81 

sn = nA, (Eq. A9) 

Q1 = Z(ai/Xi) exp (-A$) (Eq. A10) 

Q 2  = Z(ai/Ai2) exp(-Xit) (Eq. A l l )  

Q 3  = Z(ai/Xis) exp(-Ait) 

Qn = Z(ai/Xin) exp(-Ait) 

(Eq. A12) 

(Eq. A13) 

R1=  J' Y d t  (Eq. A14) 

R2 = L ' R 1  dt 

Rx = it R2 dt 

(Eq. A15) 

(Eq. A161 

R, = $,'Rn-l dt (Eq. A17) 

As can be seen, both qi's and si's are time-independent constants while 
Ri's and Qi's are functions of time t .  In addition, Ri's are obtained by 
successive integration and are related to Qi's as follows: 

In the case of n = 2, Eqs. A6-A9 yield: 

s1 = A1 + Xz 

sz = X1X2 

(Eq. A22) 

(Eq. A23) 
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Multiplying both sides of Eq. A18 by (1/X1 + 1/X2) yields: 

4 

j =  1 
Y = C AjXj (Eq. A27) 

whereAl= a1 + a2, A2 = -qiA4, A3 = - ( A 1  + Xz), Ad = -(XlX2), X I  = 
1.0, X2 = t ,  X s  = J f ,  Y dt,  and Xq = J k  X3 dt .  

This procedure may be applied to other cases. For example, if n = 3, 
then: 

s1 = X1 + A2 + A3 (Eq. A28) 

~2 = XlXz  + + (Eq. A29) 

and: 

~3 = X1X2X3 (Eq. A30) 

Multiplying Eq. A19 by (1 /X1+  1/X2 + 1/X3) yields: 
R 2 ( - + - + - ) = ( q l t - q 2 ) ( z + - + -  1 1 1  1 1 1  1 1  

A1 Xz A3 X 2  13 
(Eq. A31) 

which, when expanded, gives: 

+ - + - (a3/X?) exp(-X3t) (Eq. A32) (il :,> 
Equation A32 is simplified, yielding: 

szRz = sz(41t - q2) - S 3 ( R 3  - ‘/2 q1t2 + qzt - 4 3 )  
+ Sl(qi - R1) - Y (Eq. A33) 

or: 

Y = (a1 + a2 + a31 + ( s m  - S3qZ)t + ‘/z s3q]t2 

Equation A34 can be written in the following regression form: 

-siRi - S&* - ~ 3 R 3  (Eq. A34) 

6 

j =  1 
Y = C AjXj (Eq. A35) 

where A1 = a1 + a2 + a3, Az = -Asq1 + AGqz, A3 = -A691, A4 = - ( A l  

= t ,  X3 = l/z t 2 ,  X4 = i f , Y  dt ,  X s  = 1; X4 d t ,  and x6 = f f ,  X s  d t .  

gression equation can be proved to take the following general form: 

3- Xz + X3), Ag = - ( X I X ~  4- + A6 = -(X1X&), xi = 1.0, xz 
Thus, Eq. A35 is identical to Eq. 22 in the text. By induction, the re- 

2n 

j =  1 
Y = 1 AjXj (Eq. A36) 

Equation A36 has some distinct properties. First, there are two series 
in Xi: consecutive integrals o f t  and those of Y .  Analogously, A, can also 
be separated into two series: (a)  functions of both the intercept param- 
eters ai and exponent parameters Xi, and ( b )  strictly functions of Xi only. 
Finally, the first term AlXl  in Eq. A36 can be viewed as the intercept of 
the fitted curve. In a special situation where the multiexponential func- 
tion is constrained to pass through zero, the regression equation contains 
only 2n - 1 terms rather than 2n terms. This is due to the disappearance 
of the AlXl  term since A1 is forced to be identically zero, and there are 
only 2n - 1 unknown parameters in the original multiexponential 
equation. 
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